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Large-N saddle points 

C Araglo de Carvalho and V A Fateevf 
CERN, Geneva, Switzerland 

Received 16 January 1981 

Abstract. We use the saddle-point method to study the large-N limit in quantum 
mechanics. In a model with O ( N )  symmetry this yields the correct answer for the ground 
state energy. However, in a (quaternionic) matrix model with Sp(N) symmetry that is not 
the case. 

1. Introduction 

In this work we examine the large-N limit in quantum mechanics by the saddle-point 
method. We present the calculation of the ground state energy of a N x N quaternionic 
matrix model for which the saddle-point result (to leading order in N) does not yield the 
correct answer. Corrections to the saddle-point value prove to be of the same order in 
N. We contrast this with the case of an O(N)-symmetric model where the saddle-point 
result does provide the correct answer and corrections are suppressed by one power of 
N. In both cases we use the exactly soluble harmonic oscillator potential to establish our 
conclusions. 

In § 2 the O ( N )  model is discussed. In 9 3 we apply the same approach to the matrix 
model and point out the differences between the two cases. Our results are relevant for 
recent discussions (Jevicki 1980, Levine 1980) of the role of classical solutions in the 
large-N limit of various field theories in which zero-dimensional matrix models are 
used as prototypes. 

2. The O(N) model 

Consider the O ( N )  - invariant classical Euclidean Lagrangian given by 
N 

L = 1 1 4;  + V ( q 2 ) .  
i = l  

The quantum Hamiltonian is obviously 

H = - iV2 + V ( q 2 ) .  

The Laplace operator can be decomposed into radial and angular parts 

i O n  leave from the Landau Institute of Theoretical Physics, Moscow, USSR. 
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where r = (q2)l/' and V k  is the Beltrami operator. Since the ground state of the model is 
O ( N )  symmetric, the Hamiltonian for that state is just Ho. The ground state energy is 
given by 

where [d"q]= rN-'dr d n .  The angular integrations cancel out, and if we define 
$", the equation for xo is ~o~ r (N-1 ) /2  

If N is large we may neglect the derivative term, and the niinimisation condition just 
amounts to finding the extrema of the effective potential: 

V e f f ( r 2 )  = ( N 2 -  l ) / 8 r 2 +  V ( r 2 ) .  (6) 

For a harmonic potential, V ( r 2 )  = $r2, we obtain 

a v e f f / a r / ,  = 03 ro = $(N'-- I)"', 

For large N this agrees with the exact answer Eo = N/2. The corrections to the 
saddle-point result can be obtained by expanding Ve, around ro; since (a2Ve*/ar2)1, is 
0(1) ,  they will be reduced by one power of N with respect to the saddle-point value. 

(7) 1 /2 Vef f ( ro)  = vmin = $(N' - 1) . 

3. The matrix model 

Let Q be a N x N matrix whose entries are quaternions: 

Qii = atee, = Qi.ll+ Qtea, a; € @, 

e l = [ :  3, e=[: -3, e3=[-i 0 -i 0], eaeb=Eabcec. 

Any 2N x 2N complex matrix can be written in this form. Let us define the quater- 
nionic operations of 

6.. = Q?.U - Qae conjugation : 11 11 11 a 

complex conjugation : Qr = QF U + Qt*e,, 
Hermitian conjugation: Q: Qy,* U - Qt*e, = 0% 11 

Using these, one can define the quaternion matrix operations of 

Hermitian conjugation (Q  + Q+): (Q') i j  E Q f ,  
duality (Q + d): ( d ) ,  = 6ji. 

Matrices which are Hermitian (Q = Q') and self-dual (Q = d) are of course quaternion 
real (Q; E R). Furthermore, it can be shown (Mehta 1967) that for such matrices, there 
exists a symplectic matrix S such that 

Q = s E SP" 
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where A is diagonal, real and scalar: 

Consider now the Sp(N) invariant Euclidean Lagrangian given by 

L =iTr  Q' +Tr V(Q2j. (8) 
The trace is taken with respect to the matrix indices as well as the 2 x 2 quaternions. The 
quantum Hamiltonian is then 

H = -&'+Tr V(Q2), (9a) 

Since Q can be diagonalised by a Sp(N) transformation, the Laplace operator can be 
expressed (Mehta 1967) as the sum of a term involving the eigenvalues hi plus an 
'angular' part: 

The ground state is Sp(N) symnietric, so that we can restrict ourselves to the 'radial' 
term Ho. Its wavefunction &, is symmetric in the A,. Its energy is given by (4) with [d"q] 
replaced by [ d o ]  = H, dhi AA d n .  Angular integrations will once again cancel out and 
the A4 can be absorbed into xo= A2$,,. We note that ,yo is also symmetric in the hi (this 
would ilot be so if we had U(N) rather than Sp(N) invariance), so that we can try to 
apply the ordinary saddle-point method. The equation for ,yo is simply 

In order to arrive at (1 1) we have used 

a lnA 1 aA hi 1 = - - -- -_ 
a A k  A d h k  ? A k - - h , ) '  

i f k  

i .t k 

If we were to proceed as in the case of the O ( N )  model, the derivative term would be 
neglected and the problem would reduce to extremising the effective potential: 

Introducing the density of eigenvalues rp (x), 

the effective potential can be rewritten as 
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where we have made use of the identity (Mondello and Onofri 1980) 

From the stationarity requirement (6Veff/6cp)l,, = 0, subject to the constraint (14), one 
obtains 

(17) 
where p is a Lagrange multiplier. Inserting this saddle-point expression back into the 
constraint equation yields the value of p as a function of N and allows us to compute 

We can easily show that in the present case the saddle-point result is incorrect. We 
restrict our attention to the harmonic oscillator potential V(hi) = ZE1 A;.- If we 
carry out the procedure outlined in the preceding paragraph, we obtain p = J2N and 

cpo(x) = (J%NP - v(W2e[F - V(X)I 

Vmin = Vetr(P0). 

However, from the exact ground state solution, 
N 

t,bo= C exp (- iTr  Q2)= C exp ( -  A:), (19) 
z = l  

we can compute Eo, either by direct use of equation ( 1  1) or  simply by noting that we just 
have a collection of N ( 2 N  - 1) uncoupled oscillators (the number of independent Ql,). 

The answer is 

(20) Eo = i N ( 2 N  - 1) = N 2  -$N, 

which is clearly in disagreement with the saddle-point result. It is not justified to leave 
out the derivative term, sin,ce it contributes to the same order in N as the terms we have 
kept. It is instructive to go back to (13 )  and work directly in terms of the eigenvalues 
{ A l } .  From the inequality 

i # k  

and using (12b) one immediately obtains 

Vetf(Ai) 3 N ( N  - l)/&. ( 2 2 )  

The value on the right-hand side is Vmi,, since differentiating (21) with respect to hk and 
looking for the extrema yields 

z # k  

This saturates the inequality so that V,,, = V d h  :’)) = N ( N  - 1)/&. Taking a second 
derivative, 
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Define 

Then (24) is just M = m 2 .  If we rescale the Alp’, so that h k  = 2”4A(k0), equation (23) can 
be satisfied if we choose for the 1 the zeros of the Nth-order Hermite polynomial 
(Calogero 1978). Furthermore, as shown by Calogero (1978), the matrix 

has integer eigenvalues n = 0, 1, . . . , N - 1. Thus, the eigenvalues of m are given by 
n’ = -&(a + 1). The matrix M = m2 has therefore eigenvalues 2(n + l )2 .  ‘Since these 
are the squares of the normal frequencies of oscillation around the saddle point, we 
conclude that there will be corrections of order N2 ,  i.e. of the same order as the result 
itself, unlike the case of the O(N)  model. 
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